Summation of divergent series and Borel summability for strongly dissipative differential equations with periodic or quasiperiodic forcing terms

نویسندگان

  • Guido Gentile
  • Michele V. Bartuccelli
  • Jonathan H. B. Deane
چکیده

We consider a class of second order ordinary differential equations describing one-dimensional systems with a quasiperiodic analytic forcing term and in the presence of damping. As a physical application one can think of a resistor– inductor–varactor circuit with a periodic sor quasiperiodicd forcing function, even if the range of applicability of the theory is much wider. In the limit of large damping we look for quasiperiodic solutions which have the same frequency vector of the forcing term, and we study their analyticity properties in the inverse of the damping coefficient. We find that even the case of periodic forcing terms is nontrivial, as the solution is not analytic in a neighborhood of the origin: it turns out to be Borel summable. In the case of quasiperiodic forcing terms we need renormalization group techniques in order to control the small divisors arising in the perturbation series. We show the existence of a summation criterion of the series in this case also; however, this cannot be interpreted as Borel summability. © 2005 American Institute of Physics. fDOI: 10.1063/1.1926208g

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Summation of divergent series and Borel summability for strongly dissipative equations with periodic or quasi-periodic forcing terms

We consider a class of second order ordinary differential equations describing one-dimensional systems with a quasi-periodic analytic forcing term and in the presence of damping. As a physical application one can think of a resistorinductor-varactor circuit with a periodic (or quasi-periodic) forcing function, even if the range of applicability of the theory is much wider. In the limit of large...

متن کامل

uasiperiodic attractors, Borel summability and the ryuno condition for strongly dissipative systems

We consider a class of ordinary differential equations describing one-dimensional analytic systems with a quasiperiodic forcing term and in the presence of damping. In the limit of large damping, under some generic nondegeneracy condition on the force, there are quasiperiodic solutions which have the same frequency vector as the forcing term. We prove that such solutions are Borel summable at t...

متن کامل

Divergent Expansion, Borel Summability and 3-D Navier-Stokes Equation

We describe how Borel summability of divergent asymptotic expansion can be expanded and applied to nonlinear partial differential equations (PDEs). While Borel summation does not apply for nonanalytic initial data, the present approach generates an integral equation applicable to much more general data. We apply these concepts to the 3-D Navier-Stokes system and show how the integral equation a...

متن کامل

Borel summation of adiabatic invariants

Borel summation techniques are developed to obtain exact invariants from formal adiabatic invariants (given as divergent series in a small parameter) for a class of differential equations, under assumptions of analyticity of the coefficients; the method relies on the study of associated partial differential equations in the complex plane. The type and location of the singularities of these asso...

متن کامل

Topological Construction of Transseries and Introduction to Generalized Borel Summability

Transseries in the sense of Écalle are constructed using a topological approach. A general contractive mapping principle is formulated and proved, showing the closure of transseries under a wide class of operations. In the second part we give an overview of results and methods reconstruction of actual functions and solutions of equations from transseries by generalized Borel summation with in o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2005